Evidential Multi-label Classification Using the Random k-Label Sets Approach
نویسندگان
چکیده
Multi-label classification deals with problems in which each instance can be associated with a set of labels. An effective multi-label method, named RAkEL, randomly breaks the initial set of labels into smaller sets and trains a single-label classifier in each of this subset. To classify an unseen instance, the predictions of all classifiers are combined using a voting process. In this paper, we adapt the RAkEL approach under the belief function framework applied to set-valued variables. Using evidence theory makes us able to handle lack of information by associating a mass function to each classifier and combining them conjunctively. Experiments on real datasets demonstrate that our approach improves classification performances.
منابع مشابه
MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملA Network Perspective on Stratification of Multi-Label Data
In the recent years, we have witnessed the development of multi-label classification methods which utilize the structure of the label space in a divide and conquer approach to improve classification performance and allow large data sets to be classified efficiently. Yet most of the available data sets have been provided in train/test splits that did not account for maintaining a distribution of...
متن کاملDegrees in $k$-minimal label random recursive trees
This article describes the limiting distribution of the degrees of nodes has been derived for a kind of random tree named k-minimal label random recursive tree, as the size of the tree goes to infinity. The outdegree of the tree is equal to the number of customers in a pyramid marketing agency immediatly alluring
متن کاملML-KNN: A lazy learning approach to multi-label learning
Multi-label learning originated from the investigation of text categorization problem, where each document may belong to several predefined topics simultaneously. In multi-label learning, the training set is composed of instances each associated with a set of labels, and the task is to predict the label sets of unseen instances through analyzing training instances with known label sets. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012